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Background: The renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and
paracrine systems to regulate renal sodiummanagement and inflammation and their alterations have been asso-
ciated to hypertension and renal damage. Nearly 30–50% of hypertensive patients have insulin resistance (IR),with
a strong correlation between hyperinsulinemia and microalbuminuria.
Objective: The aimof this studywas to demonstrate the existence of an imbalance betweenRAS andRDS associated
to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention,
by pharmacological inhibition of RAS with losartan.
Materials/Methods:Ninety-sixmale Sprague-Dawley ratswere randomly divided into four groups and studied at 4,
8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12;
10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day,
in drinkingwater); and fructose-overloaded plus losartan group (F+ L4, F+ L8 and F+ L12, in fructose solution).
Results: FO inducedmetabolic and hemodynamic alterations aswell as an imbalance between RAS and RDS, charac-
terized by increased renal angiotensin II levels and AT1R overexpression, reduced urinary excretion of dopamine, in-
creased excretion of L-dopa (increased L-dopa/dopamine index) and down-regulation of D1R and tubular dopamine
transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal
tubular Na+, K+-ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers
and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and
hemodynamic alterations induced by FO from week 4. Increased urinary L-dopa/dopamine index and decreased
D1R renal expression associated to FOwere also prevented by losartan sinceweek 4. The samepatternwas observed
for renal expression of OCTs/OCTNs, Na+, K+-ATPase, pro-inflammatory and pro-fibroticmarkers fromweek 8. The
appearance of microalbuminuria and reduced nephrin expression was prevented by losartan at week 12.
Conclusion: The results of this study provide new insight regarding the mechanisms by which a pro-hypertensive
and pro-inflammatory system, such as RAS, downregulates another anti-hypertensive and anti-inflammatory
system such as RDS. Additionally, we propose the use of L-dopa/dopamine index as a biochemical marker of renal
dysfunction in conditions characterized by sodium retention, IR and/or hypertension, and as a predictor of response
to treatment and follow-up of these processes.
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1. Introduction
Essential hypertension is the chronic pathology with the highest
prevalence and incidence worldwide, and constitutes one of the main
causes of cardiovascular and kidney disease [1]. The renal management
of sodium is a determining factor in the regulation of blood pressure
levels and is controlled by various endocrine, autocrine and neurogenic
factors, which can be divided into two groups: one group causes sodium
retention and vasoconstriction while the other causes natriuresis and
vasodilation [2,3]. For many years, the existence of an over-activation
of the intrarenal renin angiotensin system (RAS) as the primary mecha-
nism of renal vasoconstriction, sodium reabsorption and development of
hypertension has been established [4]. However, many studies have
highlighted the participation of another local factor, renal dopamine
(DA), formed mainly in proximal tubular cells from filtered L-dopa, as a
counter-regulator of the hypertensive effects of angiotensin II (Ang II),
arguing that a normal functioning of the renal dopaminergic system
(RDS) is essential for the maintenance of normal blood pressure [3].
Supporting this theory, a complex interaction between RAS and RDS
has been proven, with opposing and counterregulatory effects that
operate at different levels [3,5]. One of the main targets of both systems
is renal pump Na+, K+-ATPase, an enzyme whose alteration has been
associated to sodium retention and hypertension [6].

Many factors that regulate renal sodium transportation are also able
to mediate the immune response, participating in processes of inflam-
mation, fibrosis and kidney damage [7]. In this context, renal Ang II and
DA can modulate inflammation, controlling functions whose alterations
lead to hypertension and renal damage [8–10].

On the other hand, about 30 to 50% of patients with essential hyper-
tension have insulin resistance (IR), with a strong correlation between
hyperinsulinemia and microalbuminuria [11,12]. It has been described
that IR is present in several models of hypertensive animals, including
spontaneously hypertensive rats and those fed with high fructose [13].
In this latter model, IR leads to an acquired form of hypertension in
which the increase in blood pressure is not determined genetically but
is induced by the diet [13]. Although alterations of RAS and RDS have
been described in rats with fructose overload (FO), the existence of
an imbalance between these two systems in this model has not been
studied, as well as its association to hypertension, inflammation and
kidney damage [14,15].

The aim of the study was to demonstrate the existence of an im-
balance between RAS and RDS associated to the development of IR,
hypertension and inflammatory kidney damage induced by FO, as
well as to establish the prevention of these harmful processes, by phar-
macological inhibition of RAS using losartan. Finally, we studied the be-
havior of the urinary L-dopa/DA indexwith the purpose of postulating it
as a potential biochemical marker of renal dysfunction in conditions
characterized by sodium retention, IR and/or hypertension.

2. Methods

2.1. Animal Protocol and Diet

Male Sprague-Dawley ratsweighing 150 to 180 g at the beginning of
the study were used. All animal experiments were performed in accor-
dance with the “International Ethical Guiding Principles for Biomedical
Research on Animals” established by the Council for International Orga-
nizations ofMedical Sciences andwere approved in advance by the local
ethics committee on animal research (protocol #2100-15; 0035638/
15). Animals were housed in cages with a 12-h light/dark cycle under
conditions of controlled temperature (22 °C ± 2 °C) and humidity.
Until the day of the experiment, all animals were given free access to
liquid and fed with standard chow with the following composition
(w/w): 20% proteins, 3% fat, 2% fiber, 6% minerals and 69% starch and
vitamin supplements (Commercial Rodents Purina Chow; Cooperación
SRL, Buenos Aires, Argentina). Ninety-six rats were acclimated to the
environment for 5 days and then they were randomly divided into
four groups and studied at three experimental periods: 4, 8 and
12 weeks. Rats were randomly assigned to three control (C) groups (C4,
C8 and C12), which received tap water to drink; three experimental
fructose-overloaded (F) groups, (F4, F8 and F12), which received a
10% w/v fructose solution to drink (Parafarm, Buenos Aires, Argentina);
three losartan-treated control (L) groups, which received losartan
(30 mg/kg/day) in the drinking water; and three fructose-overloaded
treated with losartan (F + L) groups, which received losartan
(30 mg/kg/day) in the 10%w/v fructose solution (n=8 for each group).

2.2. Control of Blood Pressure

The animals were trained to the procedure of blood pressure mea-
surement at 10:00 a.m., twice a week, for 2 weeks, after randomization
and prior to be sacrificed. Indirect systolic blood pressure (SBP) was
measured by means of a photoelectric tail-cuff connected to an ampli-
fier (II TC model 47; Innovators in Instrumentation, NJ, USA) in series
with an oscilloscope (type 532, Tektronic Inc., OR, USA). The value of
SBP was calculated as the average of 5 determinations per rat.

2.3. Collection and Processing of Urine Samples

At the end of each experimental period, 24-hour urine samples were
collected using metabolic cages. The urinary volume was determined
by gravimetry. The urine samples obtained were used to determine
the 24-hour diuresis as well as urinary concentrations of sodium,
creatinine, albumin, L-dopa and DA. Urinary sodium, creatinine and
albumin were measured by spectrophotometric method using an
autoanalyzer (analyzer Automated Spectrum CCX, Abbott Diagnostics,
IL, USA). The presence of microalbuminuria was defined as a urinary
albumin/creatinine ratio between 30 and 300 mg/g [16]. To determine
L-dopa and DA concentrations by high-performance liquid chromatogra-
phy (HPLC), a urine fraction was collected in tubes of polyethylene
containing 100 μl of 6 N HCl.

2.4. Collection and Processing of Blood Samples

At the end of each experimental period, all groups of animals were
fasted for 5 h. Under anesthesia with ketamine (80mg/kg) and xylazine
(12 mg/kg), blood samples were collected to measure plasma sodium,
creatinine, triglycerides, cholesterol, glucose and insulin. Plasma sodium
and creatinine were measured by spectrophotometric method using an
autoanalyzer (analyzer Automated Spectrum CCX, Abbott Diagnostics,
IL, USA). Plasma triglyceride and cholesterol levels were measured by
means of commercial kits (Colestat Wiener Labs, Santa Fé, Argentina)
using a spectrophotometric method; plasma glucose was determined
by a blood glucose meter (Accu-Chek, Roche Diagnostics, Mannheim,
Germany) and insulin by an enzyme-linked immunosorbent assay
(Millipore Corporation, MA, USA). Homeostasis model of assessment-
insulin resistance index orHOMA-IRwas calculated byusing the following
equation: HOMA= fasting glucose (mmol/L) × fasting insulin (μIU/ml)/
22.5, with the cutoff point to define IR being 2.5 points or higher [17].
The laboratory where the analytical determinations in plasma and urine
were performed is accredited under the IRAM(Argentine Standardization
and Certification Institute)/ISO (Organization for Standardization) rule
number 15189:2014.

2.5. Renal Function Parameters Calculation

To evaluate renal functionality, we determined glomerular filtration
rate estimated by creatinine clearance (CrCl), fractional sodium excre-
tion (FENa), urinary sodium excretion (UNa·UV), and daily diuresis,
which were calculated according to standard formula. Daily diuresis is
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expressed asml/day/kg, CrCl asml/min/kg, UNa·UV asmEq/day/kg and
FENa as the percentage (%) of filtered sodium.

2.6. Kidney Dissection and Processing

After urine and blood sample collection, the animals were sacrificed
by decapitation, and both kidneys were dissected and then processed to
perform biochemical andmolecular analyses. Protein immunoexpression
was analyzed by western blot, immunohistochemistry and immunofluo-
rescence techniques. The presence of collagen was determined by
staining with Sirius red.

2.7. Total Activity of Na+, K+-ATPase

Sample tissues from renal cortex weighing 50 mg were homoge-
nized (1:10 weight/volume) in 25 mM imidazole/1 mM EDTA/0.25 M
sucrose solution and centrifuged at 4700g at 4 °C for 15 min. Na+, K+-
ATPase activity was assayed in the supernatant using Fiske–Subbarow
method [18]. ATPase activity was measured by colorimetric determina-
tion of released orthophosphate, and ouabain was used to inhibit specifi-
cally Na+, K+-ATPase activity [19]. Proteins were determined by the
method of Lowry et al. [20]. Results are expressed as percentage of Na+,
K+-ATPase activity, considering control values as 100%.

2.8. Statistical Analysis

All results are expressed as means ± S.E.M. Data were processed
using Graph Pad InStat Software (CA, USA). The Gaussian distribution
was evaluated by the Kolmogorov–Smirnov method. Data with normal
distribution (dosages in blood and urine samples, Na+, K+-ATPase
activity, protein expression by Western blot) were analyzed by means
of two-way analysis of variance (ANOVA) followed by Tukey, and data
with Non-Gaussian distribution (protein expression by immunohisto-
chemistry and immunofluorescence) were analyzed by means of
Kruskal–Wallis test (nonparametric ANOVA) and multiple comparison
test of Dunn. p b 0.05 was considered statistically significant.

Antibodies, reagents and all other methodology are described in the
Supplementary Experimental Procedures (Appendix A).

3. Results

3.1. Nutritional and Metabolic Parameters

Nutritional and metabolic parameters are shown in Table 1. FO was
associated to an increase of drink intake as well as a reduction of food
intake in F rats with respect to C, since week 4. Caloric intake was not
different between F and C rats in any experimental period. Losartan
did not alter drink, food or total calories intake in L and F + L rats com-
pared to C and F, respectively, in any experimental period. Body weight
was not modified by FO or losartan in any experimental period. FO sig-
nificantly increased plasma insulin levels in F rats with respect to C from
week 4, while blood glucose values showed a non-significant trend to
increase. FO was associated to the development of IR from the same
week, since F rats showed increased HOMA-IR levels, greater than the
cut-off point to define IR. Losartan treatment did not alter blood glucose
values in any group or experimental period. Treatment with losartan
prevented the increase in insulinemia and development of IR induced
by FO from week 4, since HOMA-IR levels of F + L rats were below
the cut-off point to define IR. Total cholesterol levels were not modified
by FO or losartan, in any experimental period. At week 8 and 12, plasma
triglycerides were significantly increased in F rats compared to C, and
losartan only prevented this increase in F + L rats at week 12. Losartan
showed noeffect on nutritional andmetabolic parameters in L rats com-
pared to C in any experimental period. Time-course analysis showed
that HOMA-IR and triglyceride levels increased at weeks 8 and 12 of
FO, with respect to week 4.
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3.2. Hemodynamic and Renal Function Parameters

As it is shown in Fig. 1, SBP levels increased in F ratswith respect to C
from week 4, reaching the highest values at weeks 8 and 12. Losartan
treatment prevented the increase in SBP in F + L rats compared to F,
from week 4. CrCl was not altered by FO or losartan in any group or
experimental period. Diuresis significantly increased in F rats compared
to C, from week 4. Losartan treatment did not modify diuresis in any
experimental period. UNa·UV and FENa were significantly reduced in
F rats with respect to C, in all experimental periods. Losartan treatment
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prevented this reduction in F + L rats with respect to F, from week 4.
Treatment with losartan alone showed no effect on hemodynamic and
renal function parameters compared to C in any experimental period.
Temporal analysis showed that SBP levels increased at weeks 8 and 12
of FO, with respect to week 4.

3.3. Renal Renin Angiotensin System

Ang II immunostaining significantly increased in renal cortex in F
rats with respect to C, at 8 and 12 weeks. Losartan treatment (F + L
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group) lacked of effects in the prevention of this increase. Ang II type 1
receptor (AT1R) expressionwas significantly increased in renal cortex of
F rats compared to C, from week 4, effect prevented by losartan (F + L
group). Losartan showed no effects on renal Ang II and AT1R immuno-
staining in L rats compared to C in any experimental period (Fig. 2).
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rats compared to C, from week 4. Losartan treatment prevented the
alteration of the urinary excretion of L-dopa and DA in F + L rats with
respect to F, avoiding, in this way, the increase of the urinary L-dopa/DA
ratio (Fig. 3A-C). The prevention of RDS alterations associated to losartan
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to week 4. Urinary L-dopa/DA ratio was higher at week 12 of FO with
respect to week 4, while this ratio was higher at weeks 8 and 12 com-
pared to week 4 in F + L rats.

Renal cortex expression of organic cation transporters (OCTs) OCT-2,
OCT-N1 and total OCT-Ns (OCTN 1/2/3), which mediate tubular DA trans-
portation, was significantly reduced from week 8 in F rats compared to C
(Fig. 3D-F). Losartan showed a tendency to prevent the reduction of OCT-
2 and OCTN 1/2/3 expression in F + L rats with respect to F at week 8,
while atweek 12, the preventionwas partial but significant. Losartan treat-
mentprevented the reductionofOCT-N1expression inF+Lrats compared
to Fat week 12. DA receptor D1 (D1R) expression in renal cortex decreased
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ventionwas total atweek4,while itwaspartial atweeks 8 and12 (Fig. 3G).
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increase in F + L rats compared to F (Fig. 4A and B). Losartan treatment
had no effect on Na+, K+-ATPase activity and expression in L rats with
respect to C in any experimental period.

3.6. Biomarkers of Renal Damage

Renal cortex expression of the nuclear transcription factor kappa B
(NF-kB) increased in F rats with respect to C, from week 4. Losartan
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tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), as well as
fibrosis marker transforming growth factor β1 (TGF-β1) increased in F
rats compared to C, at weeks 8 and 12, an effect that was partially
prevented by losartan (F + L group) (Figs. 5B and C, 6 and 7). The
positive staining area for Sirius Red increased in renal cortex of F rats
with respect to C, at weeks 8 and 12, indicating the increase of interstitial
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and perivascular collagen content. Losartan partially prevented this
increase in F + L rats compared to F in the same experimental periods
(Fig. 8A and B). The presence of microalbuminuria was observed
only in F rats at week 12. Losartan prevented the appearance of
microalbuminuria in F + L rats in this experimental period (Fig. 8C). At
cortical level, the protein expression of the glomerular structural damage
marker, nephrin, was significantly reduced in F rats compared to C, at
week 12. Losartan treatment prevented this reduction in F + L rats at
week 12 (Fig. 8D). Losartan had no effect on renal damage markers
expression in L rats with respect to C in any experimental period.
4. Discussion

The results of the study show the existence of an imbalance between
renal RAS and RDS, in the context of IR and hypertension by FO. The
existence of severe metabolic and hemodynamic alterations has been
demonstrated in animal models treated with a high fructose diet, with
the development of a metabolic profile similar to that observed in
human metabolic syndrome [21]. To determine the beta-pancreatic
cells functionality as well as the IR status, the model of evaluation of
insulin homeostasis was used to calculate the HOMA index. F rats
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showed higher HOMA-IR levels than C rats, greater than the cut-off to
define IR, indicating the development of IR from week 4 of FO. These
results coincide with those obtained by several studies in which a diet
high in fructose is postulated as an IR model, with increased levels
of insulinemia [21,22]. Regarding lipid metabolism, F rats showed a sig-
nificant increase in plasma triglycerides compared to C, from week 8,
while they developed hypertriglyceridemia (plasma triglycerides
greater than or equal to 150 mg/dL) at week 12, with no changes in
total cholesterol values in any experimental period. These results are
coincident with those obtained by various experimental studies in
which a FO in the diet was associated to hyperlipidemia in rodents
[23]. On the other hand, F rats presented higher SBP levels compared
to C, from week 4. In this sense, it has been reported that FO in the
diet represents an animal model of acquired systolic hypertension [24].

Several studies showed that FO is able to induce the activation of
various local RAS, with increase of AT1R expression, renin/pro-renin
index, and Ang II levels locally [14,15]. In our study, AT1R expression
increased in renal cortex of F rats from week 4, while Ang II
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immunostaining increased fromweek 8 of FO. On the other hand, many
studies have established the existence of RDS alterations in states of IR
and hypertension, such as the one induced by FO [25,26]. Taking into
account the complex opposing and counter-regulatory interaction
between RAS and RDS at renal level, it can be proposed that one of the
effects of AT1R over-expression and Ang II increased levels would be a
reduction of DA production. Supporting this hypothesis, F rats showed
an increased urinary L-dopa/DA ratio since week 4, due to a reduction
in DA urinary excretion accompanied by an increase in L-dopa urinary
excretion, as we have previously reported [27]. In vitro studies from
our group have proven that Ang II is able to reduce DA tubular uptake,
a process mediated by members of the SLC22A family called OCTs
[28]. We hypothesize that urinary DA excretion reduction by FO could
be associated to alterations in renal DA uptake from the circulation, as
well as to a possible reduction in its transport from the intracellular
compartment to the tubular lumen, process mediated by anothermem-
bers of the SLC22A family called OCTNs. In our study, OCT-2, OCT-N1
and total OCTNs expression was reduced in renal cortex of F rats since
week 8. These results are consistent with those obtained by us and
also by other groups, who demonstrated a reduction of kidney mRNA
and protein levels of OCT-1, OCT-2 and OCT-N2 in Sprague-Dawley
rats with FO for 8 weeks [27,29,30]. On the other hand, increased AT1R
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expression due to FO may contribute to the decrease of D1R expression
observed in F rats from week 4. Supporting this hypothesis, the exis-
tence of a heterodimeric complex between renal AT1 and D1 receptors,
with opposing actions, has been demonstrated [9,31]. Additionally, the
failure of the RDS to act as a counter-regulatory mechanism of RAS
may, in turn, contribute to the over-expression of the latter, resulting
in a feedback mechanism associated to the development of sodium
retention and hypertension in this model.

It has been proven that RAS and RDS regulate the state of expression
and activity of the enzyme Na+, K+-ATPase in an antagonistic and
bidirectional way [32]. Increased Na+, K+-ATPase total activity since
week 4, as well as increased expression from week 8, would indicate
that, as result of RAS overexpression and RDS inhibition, Ang II action
on Na+, K+-ATPase would prevail over DA actions. Likewise, these
results could explain the reduction in natriuresis observed in F rats
from week 4, and are coincident with those obtained by other groups
[33,34]. 24-h diuresis increased in F rats compared to C, in all the
experimental periods. This increase can be explained by taking into
account the increase in drink intake in ratswith FO. In fact, the existence
of polydipsia and polyuria due to FO administered in the drinkingwater
is well documented [35]. A possible explanation is based on the fact that
the sweet taste of fructose would stimulate the palatability in rats,
increasing its intake [35].

FO was also associated to an increase of pro-inflammatory markers
expression in renal cortex of F rats from week 4. NF-kB expression
increased from week 4, while TNF-α and IL-6 expression increased
from week 8. Several experimental studies demonstrated the existence
of an inflammatory response in kidneys of rodents treated with a high
fructose diet [30,36]. It has also been proven that the increase of pro-
inflammatory cytokines is associated to the appearance of renal fibrosis
[37]. In this way, F rats showed increased fibrosis markers (TGF-β1 and
collagen by staining with Sirius Red) from week 8. In this context, the
imbalance given by AT1R overexpression and increased Ang II levels,
with pro-inflammatory actions, and by RDS inhibition, with anti-
inflammatory actions that oppose those of Ang II, may be proposed as
one of the mechanisms involved in the development of a pro-
inflammatory environment at renal level [7,8]. As a result of the pro-
inflammatory and pro-fibrotic processes associated to FO, the existence
of structural renal damage was evidenced by the appearance of
microalbuminuria and the reduction in nephrin expression at week
12. These results reveal the existence of structural alterations at the
glomerular filtration barrier level. Microalbuminuria is an early indicator
of kidney disease and a predictor of ischemic heart disease in essential
hypertension [16]. Nephrin is a transmembrane protein located at the
specialized cell junction of podocytes, constituting a fundamental part
of the filtration diaphragm andmaintaining the integrity of the glomeru-
lar filtration barrier [38]. Supporting our results, several studies have
demonstrated the existence of kidney damage in rats with FO [39–41].

On the other hand, losartan treatment prevented the development of
metabolic syndrome characteristics induced by FO. There are numerous
evidences that indicate that RAAS inhibitors are capable of offering addi-
tional benefits, beyond the control of blood pressure, to patients with
metabolic syndrome [42]. In our study, losartan treatment prevented
the increase of SBP and the development of IR in F + L rats since week
4, as well as the development of hypertriglyceridemia at week 12.
These results are consistent with bibliographic evidence and demon-
strate the importance of Ang II actions in the pathogenesis of hyperten-
sion, dyslipidemia and IR in the model of FO [43–45]. On the other
hand, treatment with losartan did not produce any change in drink,
food and total caloric intake, as well as in body weight, in any group or
experimental period. The absence of losartan effects on the increase in
drink intake induced by FO in F + L rats could explain why losartan
was not effective to prevent the increase in diuresis in this group, a fact
supported by a previous report [46].

Consistent with bibliographic evidence, losartan prevented the
increase in renal protein expression levels of AT1R in F + L rats
compared to F rats, from week 4 [47]. Treatment with losartan (F + L
rats) had no effect on the increased renal Ang II immunostaining in-
duced by FO atweeks 8 and 12. Considering the complex interaction be-
tween RAS and RDS, a fundamental objective of this study was to
demonstrate that RAS blockade could affect RDS state. In this sense,
losartan prevented the increase of urinary L-dopa/DA ratio, by
preventing the reduction of DA excretion as well as the increase of L-
dopa excretion. Losartan treatment showed preventive effects on the
reduction of DA tubular transporters OCT-2, OCT-N1 and total OCTNs
expression induced by FO,which could contribute to prevent the reduc-
tion ofDAurinary excretion. Losartan treatmentwas also associated to a
prevention of the decrease of renal D1R expression, result in accordance
with previous reports indicating that losartan is capable of acting as an
allosteric effector of D1R in the heterodimeric complex formed between
AT1 and D1 receptors [48].

With respect to Na+, K+-ATPase, treatmentwith losartan avoided the
increase of renal total activity and expression in F+ L ratswith respect to
F rats. Taking into account Na+, K+-ATPase actions on the regulation of
sodium excretion and blood pressure levels, the results obtained are con-
sistent with the prevention of the reduction of natriuresis and increased
SBP observed in F + L rats with respect to F. Losartan effects on Na+,
K+-ATPase have been well documented [49]. In addition to AT1R block-
ade, the prevention of D1R expression downregulation by treatment
with losartan may contribute to the prevention of increased expression
and activity of the enzyme aswell as decreased natriuresis and hyperten-
sion associated to dietary FO.

On the other hand, losartan treatment showed a renoprotective effect
in rats with FO, by preventing the onset of microalbuminuria and reduc-
tion of nephrin expression observed at week 12. The renoprotective
effects of losartan have been evidenced by several clinical and experi-
mental studies [46,50]. In our model, these effects were associated to a
prevention of the increase of pro-inflammatory and pro-fibrotic markers
expression, which has also been documented [51,52]. In this regard,
it should be noted that prevention of increased expression of pro-
inflammatory and pro-fibrotic markers by losartan was not complete.
Taking into account that losartan treatment fully prevented the develop-
ment of IR, hypertension and hypertriglyceridemia, it is important
to highlight that the increase of pro-inflammatory and pro-fibrotic
markers expression in F + L rats with respect to C are probably due to
the effects of renal metabolism of fructose per se, which are associated
to oxidative stress and inflammation and have been widely reported in
the literature [39,53].

To investigate whether losartan was capable of producing effects by
itself in control animals, the drugwas administered to rats fed a standard
balanced diet, using the same dose as used in animals with a high
fructose diet. The results obtained show that losartan per se did not
alter any of the nutritional, metabolic, hemodynamic and renal function
parameters, nor RDS and renal RAS, renal Na+, K+-ATPase and bio-
markers of inflammation, fibrosis and kidney damage in control animals.

The results so far discussed allow us to establish the existence of a
temporary association between alterations in RAS and RDS, with the
development of hypertension, IR and kidney damage. Regarding the
interaction between RAS and RDS, the reduction of DA excretion and
D1R expressionwas observed at week 4 of FO, together with AT1R over-
expression, while Ang II immunostaining was increased fromweek 8 of
FO. On the other hand, AT1R blockade by losartan led to a prevention of
RDS alterations since week 4 of treatment. These results allow us to
hypothesize that the AT1R overexpression would have a fundamental
role in RDS downregulation, more important than increased Ang II
levels, fact supported by evidence demonstrating the intimate role
between AT1 and D1 receptors at renal level [48].

Taking into account that alterations in the urinary L-dopa/DA ratio
were observed from week 4 of FO, we can propose L-dopa/DA index as
a marker of renal dysfunction in conditions characterized by sodium
retention, insulin resistance and/or hypertension, which temporarily
precedes the increase of pro-inflammatory cytokines and fibrosis
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markers expression at week 8, as well as of renal structural damage
evidenced by microalbuminuria and reduced nephrin expression at
week 12. These results would complete the studies initiated by our
group, in which we showed the existence of an alteration of the L-dopa/
DA ratio associated to FO in the diet [27]. Also, urinary L-dopa/DA ratio
was shown to respond to losartan, taking into account the prevention of
the increase of this ratio in F + L rats. The prevention of L-dopa/DA ratio
increase was total at week 4 of treatment, while it was partial at weeks
8 and 12. In this way, urinary L-dopa/DA index showed a behavior similar
to that performed by pro-inflammatory and pro-fibrotic markers. The
partial reversal of this parameter could be explained by considering
experimental evidence that shows that DA production as well as regula-
tion of D1R expression and signaling, are highly sensitive to the develop-
ment of oxidative stress and inflammation at renal level [54]. In this way,
the development of oxidative stress and the increase of pro-inflammatory
cytokines due to renal fructose metabolism, would affect RDS, indepen-
dently of RAS blockade with losartan. In Fig. 9, we suggest a mechanism
involved in the development of IR, hypertension and kidney damage in
the model of FO.

The results of this study allow us to establish the time course of RAS
and RDS alterations in our experimental model of metabolic syndrome
and to establish the temporary association (along three experimental
times) between these alterations and the development of hypertension,
Fig. 9. Pathophysiological mechanism involved in the development of hypertension and ki
development of IR from week 4, evidenced by increased HOMA-IR values in F rats. At renal
AT1R expression, simultaneously with the reduction of DA urinary excretion and D1R expre
Taking into account the effects of both systems on the regulation of renal sodium homeosta
associated to the increase of Na+, K+-ATPase expression and activity, which contributed to th
as well as fructose itself acting on the renal tubular cells, also contributed to the increase of so
systems was magnified, taking into account the increase of Ang II renal levels as well as t
Considering that Ang II and DA are capable of mediating the immune response at renal lev
actions of DA, the imbalance between both systems contributes to explain the development o
the appearance of renal structural damage at week 12, verified by the presence of microalb
fructose at renal level was capable of exerting deleterious effects, with induction of inflammat
and RDS, it can be proposed that the imbalance between both systems led to the establishm
alteration of L-dopa/DA index was early than the appearance of markers of inflammation an
biochemical biomarker of renal dysfunction in states of IR and HT. Ang II: angiotensin II; DA:
insulin resistance; OCTs: transporters of organic electrogenic cations; OCTNs: electroneutral or
RAS: renin angiotensin system.
IR and kidney inflammation. In addition, we demonstrate the beneficial
effects of AT1R blockade by losartan to prevent hypertension, IR and
kidney damage. Finally, the results provide new evidence supporting
the potential use of urinary L-Dopa/DA index as biomarker of renal
alterations related to sodium retention in this experimental model.

The main limitations of the study are: a) we did not determine
the state of expression and activity of dopamine synthesizing and
catabolizing enzymes (dopa decarboxylase, and monoamine oxidase
and catecholO-methyl transferase, respectively); b)wedid not evaluate
the state of L-dopa transporters; and c) we did not compare the effects
of losartan with other blood pressure-lowering drugs with different
mechanism of action, on the imbalance between RDS and RAS and
kidney inflammation.Wehave inmind to carry out further experiments
to complete the assessment of the functional state of RDS as well as to
determine the effects of other blood pressure-lowering drugs like
calcium channel blockers in this model.

In summary, the results of this study bring new evidence about the
mechanisms by which a pro-hypertensive and pro-inflammatory
system such as RAS can downregulate another anti-hypertensive and
anti-inflammatory system such as RDS, establishing a positive feedback
loop for the development of hypertension and renal inflammation in the
context of metabolic syndrome induced by FO. Finally, the results of this
work allow us to postulate the urinary L-Dopa/DA index as a possible
dney damage due to fructose overload in the diet. FO in the diet was associated to the
level, FO was associated to an imbalance between RAS and RDS, consisting of increased
ssion. RDS alteration was verified by increased urinary L-dopa/DA index, from week 4.
sis, the afore mentioned imbalance led to an increase in tubular sodium reabsorption,
e increase in SBP and development of HT. On the other hand, the IR present in the model,
dium reabsorption and the development of HT. At week 8, the imbalance between both
he reduction of DA tubular transporters (OCT-2, OCT-N1 and OCTN1/2/3) expression.
el, and by showing Ang II pro-inflammatory effects opposed to the anti-inflammatory
f inflammation and fibrosis detected at weeks 8 and 12 of FO, which progressively led to
uminuria and the reduction of nephrin expression. Additionally, the metabolization of
ion and oxidative stress in this organ. Considering the complex interaction between RAS
ent of a positive feedback loop for the development of HT and renal inflammation. The
d renal damage, so we postulate the utility of using this index as an early and potential
dopamine; HOMA-IR: HOMA index of insulin resistance; HT: arterial hypertension; IR:
ganic cation transporters; SBP: systolic blood pressure; RDS: renal dopaminergic system;
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diagnostic biomarker of renal alterations related to sodium retention,
hypertension and kidney inflammatory damage, as well as a predictor
of response to treatment and follow-up.

The results of this study may contribute to a better understanding of
physiological relationship between RDS and RAS and their influence on
renal sodium transport and regulation of natriuresis and diuresis. More-
over, new concepts about the imbalance between RDS and RAS in the
experimental model of metabolic syndrome can provide new insights
for the clinical treatment of the disease. The results also show new evi-
dence supporting the role of DAas anephroprotective agent and its poten-
tial use in future therapeutic strategies for the treatment of hypertension.

Whether the usefulness of urinary L-Dopa/DA ratio is confirmed, this
study would set the first antecedent to propose the use of L-Dopa/DA
index as an early marker to detect functional renal damage linked to
sodium retention and/or hypertension.
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