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Abstract
The principal objective of this study was to assess a modeling approach to Lu. longipalpis
distribution in an urban scenario, discriminating micro-scale landscape variables at micro-

habitat and macrohabitat scales and the presence from the abundance of the vector. For

this objective, we studied vectors and domestic reservoirs and evaluated different environ-

mental variables simultaneously, so we constructed a set of 13 models to account for micro-

habitats, macro-habitats and mixed-habitats. We captured a total of 853 sandflies, of which

98.35% were Lu. longipalpis. We sampled a total of 197 dogs; 177 of which were associated

with households where insects were sampled. Positive rK39 dogs represented 16.75% of

the total, of which 47% were asymptomatic. Distance to the border of the city and high to

medium density vegetation cover ended to be the explanatory variables, all positive, for the

presence of sandflies in the city. All variables in the abundance model ended to be explana-

tory, trees around the trap, distance to the stream and its quadratic, being the last one the

only one with negative coefficient indicating that the maximum abundance was associated

with medium values of distance to the stream. The spatial distribution of dogs infected with

L. infantum showed a heterogeneous pattern throughout the city; however, we could not

confirm an association of the distribution with the variables assessed. In relation to Lu.
longipalpis distribution, the strategy to discriminate the micro-spatial scales at which the

environmental variables were recorded allowed us to associate presence with macrohabitat

variables and abundance with microhabitat and macrohabitat variables. Based on the

variables associated with Lu. longipalpis, the model will be validated in other cities and envi-

ronmental surveillance, and control interventions will be proposed and evaluated in the

microscale level and integrated with socio-cultural approaches and programmatic and vil-

lage (mesoscale) strategies.
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Author Summary

Visceral leishmaniasis in America is caused by an unicellular organism, Leishmania infan-
tum (syn. chagasi) that is transmitted by insects belonging to Diptera:Phlebotominae, Lut-
zomyia longipalpis being the principal vector in urban areas. Therefore, the prevention
and control of this vector is a sound objective, so as to reduce the probability of contact
human-vector and reducing the probability of infection. Therefore, knowing the variables
that have an impact and the spatial scale at which these act will allow us to approach an
understanding of the dynamic population of the vector and allow us to develop more
appropriate strategies of control. Thus, the aim of this study was to assess a modeling
approach to Lu. longipalpis distribution in an urban scenario, discriminating micro-scale
landscape variables at microhabitat and macrohabitat scales. For this, we worked in Santo
Tomé, Corrientes, Argentina. We observed that the presence of Lu. longipalpis is defined
only by the macrohabitat variables tested, but the abundance is defined by variables of
both scales, microhabitat and macrohabitat.

Introduction
Visceral leishmaniasis (VL) in America is caused by Leishmania infantum (syn. chagasi). The
sandfly Lutzomyia longipalpis was incriminated as the most important vector [1] and the
domestic dog was involved as the main reservoir, both in urban areas [2–5].

Although Lu. longipalpis was recorded in Argentina at forest-rural sites in 1951 and 2000
with very few individuals per capture, since 2006 this species has been found in VL urban foci
in captures with more than 100 insects per trap in the first focus at the city of Posadas, Province
of Misiones, and also present in other cities of northeastern Argentina (provinces of Formosa
and Chaco), [5–9]. Salomón et al. [10,11] studied the presence and distribution of Lu. longipal-
pis in the province of Corrientes (contiguous to Misiones where Posadas is close to the border
between both provinces) to assess the possibility of autochthonous transmission of L. infantum.
This province has an active transmission scenario with canine leishmaniasis cases and vector
presence since 2008 [10], even in Santo Tomé, resulting in 16 human cases that have been diag-
nosed since 2010 till the 20th epidemiological week of 2015 (9 of which were recorded at Santo
Tomé, with 3 deaths). Despite canine leishmaniasis was diagnosed in numerous dogs, no sys-
tematic rate of infected dogs was performed until this study.

Dynamic epidemiological patterns of transmission are the result of the simultaneous and
multi-scale interaction of biotic factors that coexist in heterogeneous epidemiological land-
scapes [12,13]. In this sense, Real and Biek [14] hypothesize that the spatial context and the
geographic landscape contribute to the initial establishment of the disease. It should be noted
that the scales from microfocal to regional, although they are inclusive to each other in increas-
ing order, require questions, resolution, data quality, and different analytical tools to support
the conclusions appropriate to each scale [13,15]. At a coarse resolution the micro-scale hetero-
geneity may not be detected, as well as general macro-scale patterns may be overlooked at a
fine spatial resolution [16].

Previous studies on leishmaniasis associated Lu. longipalpis abundance in urban scenarios
with the presence of chickens, dogs and/or fruit trees, or Normalized Difference Vegetation
Index (NDVI) ranges, which can offer suitable conditions for reproductive success of the vector
[17–22]. A study carried out in the city of Posadas, identified microhabitat variables such as
surface of bare soil or covered with grass, distance from house to watercourse, number of plant-
pots, and number of tree species as possible contributors to the abundance of vectors in an
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urban environment [23]. Despite these results, factors associated with the increase in presence
and abundance of Lu. longipalpis in urban environments are only partially understood [24],
and the modeling at micro-scale usually explain up to 30% of the variability [25]. The micro-
scale is defined by the characteristics of the house and surrounding area, and is the operational
scale for focal interventions [15,26]. But when modeling Lu. longipalpis abundance in Posadas
city at this scale, the vector showed different associations between variables recorded at micro-
habitat (trap site) and macro-habitat variables (theoretically the smallest homogeneous patch
of the variable, instrumentally a buffer area that includes relatively homogeneous surround-
ings). Further, in this urban setting more than 30%-40% of the sites sampled had Lu. longipal-
pis presence while less than 5% had high abundance of the vector, suggesting that the presence
and the abundance are modulated by different variables [25]. Therefore, the principal objective
of this study was to assess a modeling approach to Lu. longipalpis distribution in an urban sce-
nario different from Posadas, discriminating micro-scale landscape variables at microhabitat
and macrohabitat scales, and the presence from the abundance of the vector, in order to try to
improve the explanatory power of the model, and so to contribute to the design of integrated
intervention strategies based on the associated variables. The visceral canine leishmaniasis
distribution was also analyzed as it was proposed as indicator of transmission or human risk
[27–29].

Materials and Methods

Area of study
This study was carried out in Santo Tomé City, Corrientes, Argentina (28°33'5.79"S, 56°
2'44.11"W). This city belongs to the ‘Espinal’ ecoregion, Neotropical ecozone [30], and it is sit-
uated on the coast of the Uruguay River which determines the border between Argentina and
Brazil. Santo Tomé has a stable population of 23,299 inhabitants [31] distributed in approxi-
mately 8 km2.

Sampling
The study was conducted from 25 to 27th February 2013. We studied vectors and domestic res-
ervoirs simultaneously. In order to sample the entire urban area, the city was divided into a
grid of 600 m2 squares (patch), except for the neighborhood ‘Estación’ on the West, where high
vector abundance had been reported by a previous study [11], and was divided into 200 m2

squares. One domestic unit was selected within each patch using the ‘worst scenario’ criterion
[32]. The ‘worst scenario’ is a functional definition to denote a site within the study patch with
the greatest probability of sandfly presence due to habitat conditions. ‘Worst scenarios’ are dis-
tinguished by the presence of dense vegetation which provides shadow, humidity and detritus;
soil rich in organic material and access to blood ingestion without the interference of external
light. In the 600 m2 patches, minimum and maximum distances between traps settled in differ-
ent patches were 145 and 472 m respectively; whereas in the 200 m2 patches, minimum and
maximum distances between traps were 110 and 270 m respectively. The geographic coordi-
nates of all the sites sampled were registered with a Global Positioning System (Garmin
eTrex10).

Entomological sampling
Sandflies were captured with automatic CDC-like light traps, used for the sampling of Phlebo-
tominae in peridomestic environments. Traps were active from approximately 5:30 p.m. to
7:30 a.m., for 3 consecutive rainless nights. Traps were placed 1.5 m above the ground.
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All Phlebotominae sandflies were dried and preserved prior to processing. The specimens
were cleared with lacto-phenol and identified according to [33] under a microscope (Zeiss,
400x). Evandromyia cortelezzii and Ev. sallesi females cannot be distinguished by their mor-
phology, so specimens collected were included within the Ev. cortelezzii-sallesi complex.

According to previous studies in urban areas where traps with more than 30 Lu. longipalpis
individuals summed up to the 10–15 percentile, we operatively classified the domestic units
into low (<30) and high abundance (>30) [20].

Climatic data
Maximum (max) and minimum (min) temperatures (T) and relative humidity (RH) were reg-
istered during sampling in the trap active period with digital thermo-hygrometers (TFA, Ger-
many) in 17 randomly selected domestic units. During the capture period mean climatic
variables were: Tmin mean: 15.42, SE: 1.75; Tmax mean: 31.43, SE: 1.02; RH min mean: 39.46,
SE: 5.59; RH max mean: 92.28, SE: 6.55.

Canine sampling
Dogs from the houses with sandfly traps were blood-sampled by veterinarians, Dogs house. We
also sampled all dogs in neighboring houses within a 25 m radius, Dogs neighbours. The pres-
ence of antibodies against L. infantum by means of the immunochromatographic rK39 tech-
nique was done in situ (Kalazar Detect Canine Rapid Test; InBios). For each dog, 11 variables
were gathered: breed (yes/no), gender, age (years), size (small, medium, large), sterilization
(yes/no), night resting place (interior/exterior), unleashed (allowed to wander around, yes/no),
moving history (yes/no), repellent use (yes/no), repellent periodicity (months), symptoms
(yes/no).

Ethics statement
The study was conducted according to the ethical regulations for research established by the
World Organization for Animal Health (OIE) [34] and with the approval of the ethics commit-
tee ‘Comité de Ética de Investigación Clínica’ (CEIC, Office for Human Research Protection,
IRB Registration 00001678 –USA; Res. N° 1108–26). All the neighbours that collaborated in
the study were informed about the practices and signed an informed consent form.

Environmental variables
Satellite information to generate the environmental stratification of the city was obtained from
a Spot 5 HRG1 J image (spatial resolution, 10 m; March 2013, facilitated by a CONAE-Argen-
tina and CNES-France agreement). The synthetic image was digitally processed in order to
convert digital values into reflectance values for each of the pixels of the cropped image. Land
cover spectral responses were determined by band math in the Red and Near-Infrared spectra,
giving a normalized difference vegetation index (NDVI) raster image as a result. The NDVI
image was subjected to an unsupervised classification by the Isodata method so as to obtain
the different classes resulting from the spectral responses of the land cover present in the area
of study [35,36]. The classification ended in 20 classes with 98% of convergence. By cluster
analysis, pixels were grouped in 6 categories: Water, Uruguay River, Bare Soil, Urban Cover
(includes non-paved streets), Low Density Vegetation, and Medium to High Density Vegeta-
tion. For each trap, a circular buffer area of 50 m was defined in order to avoid superposition,
and the percentage of each class of land cover was calculated.
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At each domestic unit, a set of 6 variables were recorded at the same time of the entomologi-
cal sampling (Trees, Fruit trees, Plant pots, Dogs, Hens and UnMat) (Table 1). Variables as
Stream and Border, were obtained from the satellite image and its posterior analysis by GIS.
The ‘Altitude’ was recorded from the GPS at each trap position.

Statistical analysis
Sandfly presence and abundance. We calculated the accumulated abundance of Lu. longi-

palpis during the 3-night trapping period. Pearson correlation coefficients for the 13 variables
were below 0.5, except for Urban cover with LDenVegC and HMDenVegC (-0.79 and -0.8
respectively). Also, variance inflation factors (VIF) were calculated with package car for R [37]
showing very high values for Urban cover. When this variable was set aside, all VIF values were
between 1 and 3 units. Therefore, Urban cover was not included in the models.

Models
We constructed a set of 13 models to account for micro- (2), macro- (2) and mixed-habitats
effects (9) (Table 2). Two models took into account all the measured variables after checking
for collinearity (NB full,Hurdle full). Ten models set aside the ‘animal’ variables (Dogs, Hens),
because of its moving nature in contrast with the other ‘sessile’ things measured. As it was
stated in the introduction, according to a conceptual framework that discriminates instrumen-
tally spatial scales, conceptually the presence from the abundance phenomena, and allow to
introduce the expert knowledge in the final models, 2 Hurdle models were constructed as an
abundance part with 6–4 variables, and a presence part with 6 variables (Hurdle micro/macro,
Hurdle micro sessile/macro, respectively). Two models took into account a possible quadratic
relationship of Stream with sandfly abundance, and the number of trees at the trap to represent
shade and humidity at the microscale. Two other hurdle models were constructed only with
biotic variables, excluding Unused materials, Altitude, Border and Stream (Hurdle biotic 1, both
parts;Hurdle biotic 2, only count part). Bare soil was not considered inHurdle Biotic 2 since
Bare Soil class had very low cover values in the entire city and could have a low influence in
vector abundance/presence.

Table 1. Environmental variables used to explain the variation in Lu. longipalpis abundance at Santo
Tomé, Corrientes.

Variable Description Habitat

Dogs Number of dogs of the household Micro

Fruit trees Number of fruit trees of the household Micro

Hens Number of hens and chickens of the household Micro

Plant pots Number of plant pots of the household Micro

Trees Number of trees in a 10x10m quadrat around the trap Micro

UnMat Covered surface with unused materials (m2) Micro

Altitude Meters (extracted from GPS) Macro

Bare Soil cover Proportion of bare soil cover a Macro

Border Distance from the trap to the nearest city border (km) Macro

Stream Distance from the trap to the nearest stream shore (km) Macro

HMDenVegC Proportion of high and medium density vegetation covera Macro

LDenVegC Proportion of low density vegetation cover a Macro

Urban cover Proportion of urban cover a Macro

a measured in a 50 m buffer area around the trap.

doi:10.1371/journal.pntd.0003951.t001
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NBmodels. The association between Lu. longipalpis accumulated abundance and the
environmental characteristics related to each domestic unit was analyzed by a multiple regres-
sion procedure using GLM with a logarithm link function. The nature of the variable indicated
a Poisson error structure, but to account also for high over dispersion we applied a Negative
Binomial error structure [38]. Model parameter estimates where calculated by means of itera-
tively weighted least squares (IWLS), and maximum likelihood for theta using packageMASS
for R [39–41].

Hurdle models. We used a hurdle count regression model to predict the presence and the
accumulated abundance of sandflies in a site as a function of explanatory variables measured at
micro and macrohabitat [42,43]. The model has two components: a truncated count compo-
nent for positive counts (with negative binomial distribution and log link), and a hurdle com-
ponent for zero counts (with binomial distribution and logit link). With this approach, we can
model simultaneously both the probability of occurrence and the abundance of sandflies, and
search for environmental variables that may determine the presence and absence of the vector
and/or the number of sandflies observed at each site.

Model selection
The final set of candidate models was selected by means of the AICc criterion and taking into
account the Akaike weights (wi, model probabilities) and ΔAICc [44–47]. Models with the low-
est AICc and highest wi were considered the best models in the set. Spatial autocorrelation in
the raw variable and models residuals were checked by Moran’s I and semivariograms with
SAM software [48]. Parameter estimates and BCa intervals (bias-corrected and accelerated

Table 2. Candidate models, variables included and habitat/s.

Type Model Variables Habitat

GLM Negative
Binomial

Full Altitude + Bare Soil cover + Border + Dogs + Fruit trees + Hens + HMDenVegC + LDenVegC
+ Plant pots + Stream + Trees + UnMat

Mixed

Micro-sessile Fruit trees + Plant pots + Trees + UnMat Micro

Macro Altitude + Bare Soil cover + Border + HMDenVegC + LDenVegC + Stream Macro

Biotic Fruit trees + HMDenVegC + LDenVegC + Plant pots + Trees Mixed

Shade/humidity Stream + Stream 2 + Trees Mixed

Hurdle model Full Altitudea,b + Bare Soil covera,b + Bordera,b + Dogsa,b + Fruit treesa,b + Hensa,b + HMDenVegCa,b

+ LDenVegCa,b + Plant potsa,b + Streama,b + Treesa,b + UnMata,b
Mixed

Micro-sessile Fruit treesa,b + Plant potsa,b + Treesa,b + UnMata,b Micro

Macro Altitudea,b + Bare Soil covera,b + Bordera,b + HMDenVegCa,b + LDenVegCa,b + Streama,b Macro

Micro/Macro Altitudeb + Bare Soil coverb + Borderb + Dogsa + Fruit treesa + Hensa + HMDenVegCb

+ LDenVegCb + Plant potsa + Streamb + Treesa + UnMata
Micro/

Macro

Micro-sessile
/Macro

Altitudeb + Bare Soil coverb + Borderb + Fruit treesa + HMDenVegCb + LDenVegCb + Plant potsa

+ Streamb + Treesa + UnMata
Micro/

Macro

Biotic 1 Bare Soil covera,b + Fruit treesa,b + HMDenVegCa,b + LDenVegCa,b + Plant potsa,b + Treesa,b Mixed

Biotic 2 Altitudeb + Borderb + Fruit treesa + HMDenVegCa,b + LDenVegCa,b + Plant potsa + Streamb

+ Treesa
Mixed/

Macro

Shade/Macro Altitudeb + Borderb + HMDenVegCb + LDenVegCb + Streama,b + Stream2 a + Treesa Mixed/
Macro

For Hurdle models:
aAbundance part,
bPresence part.

doi:10.1371/journal.pntd.0003951.t002
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bootstrap) of the final model(s) where calculated by bootstrap based on 1000 replications with
package boot for R [49].

Model diagnostics
To evaluate the predictive ability of the final model for the “presence part” we calculated:
Kappa index, proportion of correct classifications (PCC), area under the curve (AUC), sensitiv-
ity and specificity with package PresenceAbsence for R [50]. As a threshold probability must be
selected to distinguish positive from negative (sandfly presence and absence, respectively) all
possible cut-off points from 0.01 to 0.99 were assessed to select an optimum cut-off point
which maximized the Kappa index that assesses the improvement of classification of the model
over chance.

Canine leishmaniasis cases analysis
In first place, we analyzed the variable rk39 positivity (dichotomic, = 1 if dog had a positive
rk39) by means of a generalized linear mixed model taking into account the clusters (random
factor) made up of Dogs house plus Dogs neighbors. We constructed 5 models with binomial
family and logit link using package lme4 for R [51].Model 1 took into account individual dog
characteristics such as: breed, gender, age, size, and sterilization;Model 2 accounted for dogs
habits: night resting place, unleashed,moving history, repellent use, repellent periodicity.Model
3 included all the variables.Model 4 was similar to model 1 but incorporating two interactions:
gender�sterilization, and breed�sterilization. Models were compared by AICc.

In second place, we analyzed the association between the proportion of dog positivity in
each trapped house and its neighbours (Proportion of Positives) and the centered environmen-
tal variables, including also the accumulated abundance of phlebotomines. Due to over disper-
sion, we constructed 5 GLMmodels with negative binomial family and log link (variable:
number of positive dogs, offset: number of dogs analyzed) using the same variables as the ones
listed as NB models in Table 2 and incorporating the accumulated abundance of Lu. longipalpis
at each house, using packageMASS for R [39].

Results

Entomological
We captured a total of 853 sandflies belonging to six species: Lu. longipalpis,Migonemyia migo-
nei, Nyssomyia whitmani, Brumptomyia sp., Ny. neivai and Ev. cortelezzii-sallesi (Table 3). The
98.35% of the sandflies captured were Lu. longipalpis. The capture effort was 53 traps/night
(total: 159 traps), of which 51% were positive for Lu. longipalpis (Fig 1). Of this percentage,
85% were sites with abundances between 1 to 29 specimens, and 15% showed abundances
higher than 30 individuals.

Canine
We sampled a total of 197 dogs, 177 of which were associated to households were insects were
sampled (Fig 1). The rest of the dogs belonged to houses that could not be included in the
insect sampling due to logistical issues. Positive rK39 dogs represented 16.75% of the total, of
which 47% were asymptomatic. We did not find evidences of association between rK39 Positiv-
ity and the explanatory variables. The models showed no improvement compared to the null
model.
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As for the Proportion of positives, it seems to be associated with microscale variables such as
Trees near the trap (p = 0.005) and Stream2 (p = 0.008) but the effect could not be confirmed
due to computational issues during bootstrapping.

Environmental variables
Data extracted from satellite images. After the image classification of the land covering,

the total area of the city was divided in 46.66% of Urban cover, 31.15% of Low density vegeta-
tion cover, 17.91% ofMedium to high density vegetation cover, and 4.25% of Bare soil cover
(Fig 2).

Estimated models
After model selection, one NB model and three hurdle count regression models were responsi-
ble for 99% of the collective model weight (S1 Table). But the best model of the set was theHur-
dle shade/Macromodel that differed in almost 10 units (or more) of AICc from the others.
After removing two non-significant terms from the presence part (BCa intervals contained the
0 value), Altitude and Stream2, AICc diminished 4 units and this model was retained.

The Kappa index calculates the agreement between model predicted values and observed
data, indicating how much better from a random classification the model is. The reduced
final model had an intermediate Kappa value of 0.43 (SD = 0.12; optimum cutoff = 0.54). The
reduced model improved the sensitivity from 0.55 (SD = 0.09) to 0.71 (SD = 0.08) but reduced
the specificity from 0.91 (SD = 0.06) to 0.73 (SD = 0.1). The reduced final model correctly clas-
sified 72% (SD = 0.06) of the data (AUC = 0.75 (SD = 0.07)) (S1 Fig).

After calculating BCa confidence intervals for each estimate, only distance to the border of
the city (Border) and high to medium density vegetation cover (HMDenVegC) ended to be
explanatory, all positive, of the presence of sandflies in the city (Table 4). All variables in the
abundance model ended to be explanatory, trees around the trap (Trees), distance to the stream
and its quadratic (Stream, Stream2), being the last one the only one with negative coefficient
indicating that the maximum abundance was associated to medium values of distance to the
stream.

Discussion
In Santo Tomé, the spatial distribution of dogs infected with L. infantum show a heterogeneous
pattern throughout the city. We could not confirm an association of the distribution of infected
dogs with the variables assessed. Although both dog’s positivity and vector abundance were
found related to microhabitat variables we could not link them in this study. Besides environ-
mental factors related to vector distribution, positive dog0s spatial pattern could be due to social

Table 3. Phlebotominae fauna by species and sex.

Species Male Female (gravid) Total % Male/Female ratio

Lu. longipalpis 734 92 (13) 826 98.33 8/1

Mg. migonei 3 5 (1) 8 0.95 0.6/1

Ny. whitmani 0 2 2 0.24 -

Ny. neivai 1 0 1 0.12 -

Ev. cortelezzii-sallesi 0 1 1 0.12 -

Brumptomyia sp. 1 1 2 0.24 -

Total 739 101 (14) 840 100 7.3/1

doi:10.1371/journal.pntd.0003951.t003
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factors, as networks of breeding or selling puppies (horizontal and vertical transmission), tran-
sit or traffic within the locality or with other endemic locations [13,52]. Indeed, similar results
were reported in studies performed in different cities of Brazil, where higher concentrations of
VL canine cases incidence were associated just with VL human cases or altitude [53–56]. How-
ever, a meta-analysis of the factors associated with canine VL in Brazil reported evidence of sta-
tistical association with one environmental variable (presence of green areas adjacent to the
house), individual variables such as short hair and pure breed, and individual management
variables (peri-domestic/domestic restricted dogs), but the authors also highlighted design and

Fig 1. Spatial distribution of the proportion of dogs and sandfly. Spatial distribution of the proportion of rK39+ dogs (a) and sandfly accumulated
abundance (b). Circle size represents the arbitrarily categorized values of the proportion of rK39+ dogs, and abundance of Lu. longipalpis, respectively. In
parenthesis, number of sampling sites are indicated.

doi:10.1371/journal.pntd.0003951.g001
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analysis limitations of the reviewed articles [57]. Also, besides the individual determinants and
individual dog-management variables, other animal management variables related to attrac-
tiveness or dilution effect of blood sources for vectors were associated with dog seropositivity
(positive association with the number of cats in the households, protective presence of chickens
and pigs) [29].

Fig 2. Land cover classification of the city. Land cover vectorial obtained after a non-supervised classification of the NDVI raster image. Sand-fly sampling
sites are represented by the▲ symbol. Areas of 50 m radius around the trap were used to calculate each type of cover proportion.

doi:10.1371/journal.pntd.0003951.g002

Table 4. Parameters of the final model.

Covariate Parameter estimate SE Lower BCa CL Upper BCa CL P value

Presence model Intercept 0.210 0.427 -0.637 0.991 0.562

Border 5.355 2.124 1.205 8.173 0.0036

HMDenVegC 8.435 4.685 0.410 16.136 0.0194

LDenVegC 7.172 3.498 -0.187 12.992 0.0255

Stream 3.282 2.062 -0.571 7.115 0.0531

Abundance model Intercept 3.289 3.151 -8.495 4.302 <0.001

Stream 7.384 5.049 1.979 24.520 0.0016

Stream2 -50.137 19.175 -80.91 -17.97 <0.001

Trees 0.400 0.208 0.123 0.909 0.0014

Bootstrapped parameter estimates of the reduced final model, Hurdle Shade/Macro, bootstrap SE values, and 95% BC a confidence limits (CLs) for

covariates predicting the presence (binomial model) and abundance (count model) of sandflies in the city of Santo Tomé. Bold covariates do not include 0

in their CLs.

doi:10.1371/journal.pntd.0003951.t004
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This lack of strong or consistent associations in the literature could be related mainly to: a)
design limitations due to work with: reported cases vs. actual incidence of infection, prevalence
of past transmission vs. current environmental variables, individual factors of susceptibility-
vulnerability-exposition mixed with environmental variables, dogs with different roaming area;
b) inconsistencies between the spatial scales of dependent and explanatory variables; c) diagno-
sis limitations, in our study the majority of the rK39+ dogs were clinically asymptomatic, and
it is known the relative low sensitivity of rK39 test in asymptomatic dogs [58,59]; and d) dog
management practices, as the dog spatial distribution could be more associated with dog transit
and puppies adopting (social/commercial networks of pets) than to the actual distribution of
the probability of transmission [13,52]. The last point is even further important when at higher
time-space scales the data from dogs in rural-periurban and urban landscapes are analyzed
together.

We report Ny. whitmani for the first time in the study area. This species has been incrimi-
nated in the cutaneous leishmaniasis outbreaks due to Leishmania braziliensis of the Argentin-
ean northeastern border both by natural infection and environment-time-space association
with human cases, though observed abundances in the study area are still far from epidemic
risk and this species has usually been associated to primary vegetation in Argentina [60,61].
However, it has been related to more urbanized environments in recent studies in the north-
eastern region [5].

In relation to Lu. longipalpis distribution, the strategy to discriminate the micro-spatial
scales at which the environmental variables were recorded allowed us to associate presence
with macrohabitat variables, and abundance with microhabitat and macrohabitat variables.

The presence of Lu. longipalpis was positively affected by the variables Distance to the city
border andHigh density vegetation cover. As the distance to the city border increased, the prob-
ability of Lu. longipalpis presence tend to be higher. The variable High density vegetation cover
showed also a positive relation with the vector presence. It can be explained by the generation
of enabling environments for the presence of Lu. longipalpis. Though these variables seem to
be contradictory, the city under study has a not uniform physiognomy presenting centric areas
with high proportion of green surface, offering small breeding and resting conditions for the
vector (Fig 2). The preference of Lu. longipalpis for complex urban environments [62] with
green patches (between ruralized periurban and downtown) were reported in the literature
[5,20,23,25,63,64]. Further, in cities as Rio de Janeiro, Brazil, Lu. longipalpis was found in Caju
Cementery surrounded by highly urbanized blocks [65]. On higher spatial scales it was also
observed the association of Lu. longipalpis and its sibling species Lu. cruzi with highly urban-
ized areas and low NDVI indexes, but with transitional and vegetation-patched landscapes
[66–68].

The abundance of Lu. longipalpis showed association with variables at both types of scale.
At the microhabitat level, the number of trees around the trap was positively related with the
vector accumulated abundance. Trees offer a micro environment where Lu. longipalpis can
find appropriate refuge; suitable breeding places [21] by means of physical properties (trunk
structure, shadow size and quality); semiochemicals (the involved species could also be impor-
tant) [23]; and tree coverage (100 m buffer) that showed an association with the abundance of
this vector [25]. Other two variables that positively accounted for the differences in the vector’s
abundance in the city were distance to the water course and its quadratic, both at the macroha-
bitat scale. Those areas placed at medium distances, between 470 and 710 m from the water
course, showed an association with high abundances of Lu. longipalpis. On the other hand,
houses outside this range had lower abundances. This result might indicate that water courses
provide an optimum ‘window’ of humidity for the vector reproduction/survival, or for sandlfly
predators (i.e. Scenopinidae larvae [69]), or might be also associated with the intermediate
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environmental heterogeneity between highly urbanized and rural landscapes. Santini et al. [23]
found association of Lu. longipalpis abundance in urban scenarios with this variable also at
microhabitat scale. On the other hand, in a study that used NDWI (Normalized Difference
Water Index) and NDVI no correlation was observed with Lu. longipalpis abundance [22],
showing again the importance about the consistency between the spatial scales of the hypothe-
sis-sampling design and the conclusions.

Other variables once reported as associated with Lu. longipalpis presence or abundance did
not show association in our study. The attractiveness of mammals and birds, mainly chickens,
and its capacity to enhance breeding sites (moisture, manure, shadowed dwellings) was pro-
posed [17,69], while the presence of chickens, but not its quantity, was associated with the abun-
dance of Lu. longipalpis in urban settings [20]. The hen houses are usually a preferred site,
selected by researchers and control programs to locate traps, as it is reported in the Materials
and Methods section of many articles about Lu. longipalpis even this; therefore the homogeneity
of this variable between trapping points at micro-scale could have masked the results, and the
effect at the macrohabitat level was not measured. Low socio-economic level and poor sanitation
(sewage system and rubbish collection) were associated with VL incidence and these associations
were explained by vector suitability [18], although the facts beneath the increased vector exposi-
tion could be indicators of a more complex social determination of the disease distribution.

Considering the low temperatures registered during the sampling nights, sites with high trap
positivity could reveal stable vector hot spots as the ones described at the city of Posadas in the
2007 and 2009 [20,23,25,64], while null sandfly traps could also be false negatives. The authors
suggested that this stable sites with high abundance of Lu. longipalpis could act as source popula-
tions in a metapopulation structure within a ‘city network’ of connected patches. Therefore, to
identify the sites in each scale and the variables associated with presence and abundance could
contribute to assess the significance of particular habitat patches [70], with implications in vector
control-surveillance integrated strategies [71,72]. At microscale, the operational questions to be
answered will be for example, which households/areas within the city require specific interven-
tions/recommendations at a given point of time? In this sense, to develop a model that explains
more than 70% of the Lu. longipalpis distribution could contribute to propose environmental
management control interventions. From individual practices to county planning (microhabitat
to macrohabitat) the recommendations on density and species of trees, and potential breeding
sites could be assessed experimentally. On the other hand, finding areas more suitable for Lu.
longipalpis (hosting the populations with highest abundances in the village (distance to stream)
by itself or as surrogate of socio-economic conditions or related practices (chicken breeding)),
may be used to focus the allocation of resources, or to select the sites to evaluate the interventions.

In conclusion, discriminating environmental spatial based variables recorded at mesohabi-
tat and microhabitat buffers and modeling Lu. longipalpis presence and abundance as different
components, allowed to explain 70% of the vector presence. Based on the variables associated
with Lu. longipalpis, the model will be validated in other cities and environmental surveillance
and control interventions will be proposed and evaluated in the microscale level. In this sense,
programmatic and village strategies integrated with socio-cultural approaches could be incor-
porated in city, neighborhood and individual environmental management, according to each
mesoscale and microscale scenarios, based on participatory action methodologies, so the actual
intervention will be defined together with community [73].

Supporting Information
S1 Table. Model selection metrics of models.Model selection metrics for NB and hurdle
count regression models fit to presence and/or abundance data for Phlebotominae sandflies at
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53 sites. Model results are ranked by AICc from best to worst.
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S1 Fig. Probability of sandfly presence. Estimated probability of sandfly presence (dots and
smoothed line) in terms of increasing proportion of vegetation cover (Low + Medium/High
density vegetation cover proportion). ID: trap/site.
(TIF)
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